Several Explicit Evaluations for Ratios of Ramanujan’s Theta Function φ(q)

نویسندگان

  • Qinglun Yan
  • Xiaona Fan
چکیده

In this paper we first give alternative proofs of two Ramanujan’s theta function identities. Then we derive several explicit evaluations for ratios of Ramanujan’s theta function φ(q). Mathematics Subject Classification: 11A55, 11F20, 11F27

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mock Theta Functions and Quantum Modular Forms

Ramanujan’s last letter to Hardy concerns the asymptotic properties of modular forms and his ‘mock theta functions’. For the mock theta function f (q), Ramanujan claims that as q approaches an even-order 2k root of unity, we have f (q)− (−1)(1− q)(1− q)(1− q) · · · (1− 2q+ 2q − · · ·)= O(1). We prove Ramanujan’s claim as a special case of a more general result. The implied constants in Ramanuja...

متن کامل

Sieved Partition Functions and Q-binomial Coefficients

Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved q-binomial coefficient is the sum of those terms whose exponents are congruent to r modulo t. In this paper explicit polynomial identities in q are given for sieved q-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as ...

متن کامل

On the Irrationality of Ramanujan’s Mock Theta Functions and Other Q-series at an Infinite Number of Points

We show that all of Ramanujan’s mock theta functions of order 3, Watson’s three additional mock theta functions of order 3, the RogersRamanujan q-series, and 6 mock theta functions of order 5 take on irrational values at the points q = ±1/2,±1/3,±1/4, . . . .

متن کامل

IDENTITIES AND CONGRUENCES FOR RAMANUJAN’S ω(q)

Recently, the authors [3] constructed generalized Borcherds products where modular forms are given as infinite products arising from weight 1/2 harmonic Maass forms. Here we illustrate the utility of these results in the special case of Ramanujan’s mock theta function ω(q). We obtain identities and congruences modulo 512 involving the coefficients of ω(q).

متن کامل

JACOBI’S TRIPLE PRODUCT, MOCK THETA FUNCTIONS, AND THE q-BRACKET

In Ramanujan’s final letter to Hardy, he wrote of a strange new class of infinite series he called “mock theta functions”. It turns out all of Ramanujan’s mock theta functions are essentially specializations of a so-called universal mock theta function g3(z, q) of Gordon–McIntosh. Here we show that g3 arises naturally from the reciprocal of the classical Jacobi triple product—and is intimately ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010